

ANDROID BLUETOOTH MULTIPLAYER

by

v2.1.0

Contents

1. General Information
2. AndroidBluetoothMultiplayer Methods Overview
3. AndroidBluetoothMultiplayer Methods
4. AndroidBluetoothMultiplayer Events
5. UNet Integration
6. Configuring AndroidManifest.xml and Extending Activities
7. Integration with Prime31’s Android Activity Sharing
8. Contact
9. Changelog

General Information

Android Bluetooth Multiplayer gives you an ability to add Bluetooth multiplayer to your
Android game using a simple API, similar to that of Unity networking components. It is
also fully compatible with both UNet and legacy Unity built-in networking. This means
you can easily reuse your networking code for Internet and local gaming with minimal
changes, or use any of existing tutorial.

Plugin overrides built-in Unity activity and adds new permissions to
AndroidManifest.xml in order to function. AndroidManifest.xml is generated
automatically in case it is not present. You can also do that manually. To do that, in case
your project doesn’t uses any plugins that modify AndroidManifest.xml, use

 Tools → Lost Polygon → Android Bluetooth Mutiplayer → Generate AndroidManifest.xml

menu item, otherwise try

 Tools → Lost Polygon → Android Bluetooth Mutiplayer → Patch existing AndroidManifest.xml

That will work for most cases. In case of any problems, refer to “Configuring
AndroidManifest.xml and extending Activities” section of this documentation.

All the plugin code resides in LostPolygon.AndroidBluetoothMultiplayer namespace.

AndroidBluetoothMultiplayer class wraps all interactions between Unity and Java. All
methods are declared static, so no object instantiation is required. This component,
attached to a GameObject, is also required to successfully receive callbacks from Java
side. It will be created automatically when you use it, so you don’t have to do that
manually.

Do not forget to unregister the event listeners upon destruction of objects that use the
events (for example, at MonoBehaviour.OnDestroy() or MonoBehaviour.OnDisable()),
as not doing that may lead to memory leaks and weird bugs in your game.

Do not rename the AndroidBluetoothMultiplayer class, as that will break Java callbacks.
It is important to call Init(string uuid) before any other interaction with the plugin.

UUID is an identifier that must be unique for every Bluetooth application.

Bluetooth connection can only be established if the connecting and host device have

the same UUID. You can generate random unique UUID for your game by using

 Component → Lost Polygon → Android Bluetooth Mutiplayer → UUID generator

It is highly recommended to run demos on your device first to see if plugin is working
okay. The Demos directory and its contents can be safely deleted for production, or just
if you don’t need it anymore.

Note: as Android’s Bluetooth implementation guarantees data delivery, it is discouraged
to use reliable state synchronization, as that may lead to delays and stuttering.

Note: Device discovery is a heavyweight procedure. New connections to remote
Bluetooth devices should not be attempted while discovery is in progress, and existing
connections will experience limited bandwidth and high latency. Because of that,
StopDiscovery() is always called automatically when connecting to server.

Use the logcat while testing the plugin and debugging your game — some debug
information is available only in the log, and most of it also requires calling
setVerboseLog(true).

Unity 5.2 and newer is supported. Pro license is not required.

http://developer.android.com/tools/help/logcat.html

AndroidBluetoothMultiplayer Methods Overview

bool Initialize(string uuid)

Initializes the plugin and sets the Bluetooth service
UUID.

bool StartServer(ushort port)

 Starts the server, listening for incoming Bluetooth
connections.

bool Connect(string address, ushort port)

 Connects to a Bluetooth device.
bool Stop()

 Stops all Bluetooth connectivity.
bool StartListening()

 Starts listening for new incoming connections.
bool StopListening()

 Stops listening for new incoming connections.
bool ShowDeviceList(bool showAllDeviceTypes)

Shows the Bluetooth device picker dialog.
bool RequestEnableBluetooth()

 Opens a dialog asking user to enable Bluetooth.
bool EnableBluetooth()

Enables the Bluetooth adapter, if possible.
bool DisableBluetooth()

Disables the Bluetooth adapter, if possible.
bool RequestEnableDiscoverability(int discoverabilityDuration)

 Opens a dialog asking user to make device
discoverable on Bluetooth.

BluetoothMultiplayerMode GetCurrentMode()

 Returns the current plugin mode.
bool GetIsBluetoothEnabled()

Returns true if Bluetooth is currently enabled and
ready for use.

bool GetIsBluetoothAvailable()

 Returns true if Bluetooth is available on the device.
BluetoothDevice GetDeviceFromAddress(string deviceAddress)

Returns Bluetooth device by its Bluetooth address.
BluetoothDevice GetCurrentDevice()

 Returns current Bluetooth device.
bool StartDiscovery()

 Starts discovery of nearby discoverable Bluetooth
devices.

bool StopDiscovery()

 Stops discovery of nearby discoverable Bluetooth
devices.

bool GetIsDiscovering()

 Returns true if Bluetooth device discovery is going
on.

bool GetIsDiscoverable()

 Returns true if device is discoverable by other
devices.

BluetoothDevice[]

GetBondedDevices()

 Returns an array of bonded (paired) Bluetooth
devices.

BluetoothDevice[]

GetNewDiscoveredDevices()

 Returns an array of Bluetooth devices discovered
during current discovery session.

BluetoothDevice[]

GetDiscoveredDevices()

 Returns an array of bonded (paired) Bluetooth
devices and Bluetooth devices discovered during
current discovery session.

bool SetRawPackets(bool doEnable)

Enables or disables raw packets. Use only if you
know what you are doing.

void SetVerboseLog(bool doEnable)

 Enables or disables verbose logging.

AndroidBluetoothMultiplayer Methods

public static bool Initialize(string uuid)

 Initializes the plugin and sets the Bluetooth service UUID.

Parameters

uuid Bluetooth service UUID. Must be different for each game.

Returns
true on success, false if UUID format is incorrect.

public static bool StartServer(ushort port)

 Starts the server that listens for incoming Bluetooth connections. Must be called
before Network.InitializeServer.
 Throws BluetoothNotEnabledException if called when Bluetooth was not
enabled.

Parameters

port
Server port number. Must be the same as passed to
Network.InitializeServer.

Returns
true on success, false on error.

public static bool Connect(string hostDeviceAddress, ushort port)

 Connects to a Bluetooth device. Must be called before Network.Connect.
 Throws BluetoothNotEnabledException if called when Bluetooth was not
enabled.

Parameters

hostDeviceAddress Address of host Bluetooth device to connect to.

port
Server port number. Must be the same as passed to
Network.Connect.

Returns
true on success, false on error.

public static bool Stop()

 Stops all Bluetooth connections. Client will disconnect from the server. Server will
break connection with all the clients and then halt.

Returns

true on success, false on error.

public static bool StartListening()

Starts listening for new incoming connections if listening was disabled by

StopListening().For example, you should listen for connections while in game lobby,
and stop listening when the actual game has started to make sure no new device could
connect. Available only in Server mode.

Returns

true on success, false on error.

public static bool StopListening()

Stops listening for new incoming connections. For example, you should listen for

connections while in game lobby, and stop listening when the actual game has started
to make sure no new device could connect. Available only in Server mode.

Returns

true on success, false on error.

public static bool ShowDeviceList(bool showAllDeviceTypes = false)

Shows the Bluetooth device picker dialog. Note: this method may fail some on

exotic Android modifications like Amazon Fire OS.
Throws BluetoothNotEnabledException if called when Bluetooth was not

enabled.

Parameters

showAllDeviceTypes
Whether to show all types or devices (including
headsets, keyboards etc.) or only data-capable.

Returns
true on success, false on error.

public static bool RequestEnableDiscoverability (int discoverabilityDuration = 120)

Opens a dialog asking user to make device discoverable on Bluetooth for

discoverableDuration seconds. This will also request the user to turn on Bluetooth if it
was not enabled.

On Android 4.0 and higher, setting the parameter to 0 allows making device
discoverable “forever” (until discoverability is disabled manually or Bluetooth is
disabled).

Parameters

discoverableDuration
The desired duration of discoverability (in seconds).
Default value 120 seconds.

Returns
true on success, false on error.

public static BluetoothMultiplayerMode GetCurrentMode()

Returns the current plugin mode (None, Server, or Client).

Returns

Current plugin mode on success, BluetoothMultiplayerMode.None on error.

public static bool RequestEnableBluetooth ()

Opens a dialog asking the user to enable Bluetooth. It is recommended to use this

method instead of EnableBluetooth() for more native experience.

Returns

true on success, false on error.

public static bool EnableBluetooth()

Enables the Bluetooth adapter, if possible.

 Do not use this method unless you have provided a custom GUI acknowledging
user about the action. Otherwise use RequestBluetoothEnable().

Returns

true on success, false on error.

public static bool DisableBluetooth()

Disables the Bluetooth adapter, if possible.

Returns

true on success, false on error.

public static bool GetIsBluetoothEnabled()

Returns true if Bluetooth is currently enabled and ready for use.

Returns

true if Bluetooth connectivity is available and enabled, false otherwise.

public static bool GetIsBluetoothAvailable()

Returns whether the Bluetooth is available. Bluetooth can be unavailable if no

Bluetooth adapter is present, or if some error occurred.

Returns

true if Bluetooth connectivity is available, false otherwise.

public static BluetoothDevice GetDeviceFromAddress(string deviceAddress)

Returns BluetoothDevice of a device by its Bluetooth address.

Returns
BluetoothDevice if Bluetooth connectivity is available and enabled, null

otherwise or on error.

public static BluetoothDevice GetCurrentDevice()

Returns BluetoothDevice of current device the application runs on.

Returns
BluetoothDevice if Bluetooth connectivity is available and enabled, null

otherwise or on error.

public static bool StartDiscovery()

Starts the process of discovering nearby discoverable Bluetooth devices.
The process is asynchronous and is usually held for 10-30 seconds in time. Note

that performing device discovery is a heavy procedure for the Bluetooth adapter and
will consume a lot of its resources and drain battery power.

Returns

true if Bluetooth connectivity is available and enabled, false otherwise.

public static bool StopDiscovery()

Stops the process of discovering nearby discoverable Bluetooth devices.
Because discovery is a heavyweight procedure for the Bluetooth adapter, this

method is called automatically when connecting to the server.

Returns
true if Bluetooth connectivity is available and enabled and the discovery was

going on, false otherwise.

public static bool GetIsDiscovering()

Returns whether the local Bluetooth adapter is currently in process of device

discovery.

Returns
true if Bluetooth connectivity is available and enabled and device discovery is

currently going on, false otherwise.

public static bool GetIsDiscoverable()

Returns wheter the local Bluetooth adapter can be discovered by other devices.

Returns
true if Bluetooth connectivity is available and enabled and device is currently

discoverable by other devices, false otherwise.

public static BluetoothDevice[] GetBondedDevices()

Returns BluetoothDevice[] of bonded (paired) devices. This method is

available even without starting the discovery process.

Returns
BluetoothDevice[] if Bluetooth connectivity is available and enabled, null

otherwise or on error.

public static BluetoothDevice[] GetNewDiscoveredDevices()

Returns BluetoothDevice[] of devices discovered during the last or current

discovery session. This list is not cleared after the discovery ends.

Returns
BluetoothDevice[] if Bluetooth connectivity is available and enabled and

device discovery is currently going on, null otherwise or on error.

public static BluetoothDevice[] GetDiscoveredDevices()

Returns BluetoothDevice[] of bonded (paired) devices and devices

discovered during the ongoing discovery session. This list is not cleared after the
discovery ends.

Returns

BluetoothDevice[] if Bluetooth connectivity is available and enabled and
device discovery is currently going on, null otherwise or on error.

public static void SetVerboseLog(bool isEnabled)

Enables or disables verbose logging. Useful for testing and debugging.

Parameters

isEnabled The new state of verbose logging.

public static bool SetRawPackets(bool isEnabled)

Enables or disables raw packets mode. Could only be called when no Bluetooth

networking is going on. This option can be used if you want to exchange raw data with a
generic Bluetooth device (like an Arduino with a Bluetooth Shield). Use this only if you
know what you are doing.

Parameters

isEnabled The new state of raw packets mode.

Returns
true if no Bluetooth networking is going on, false otherwise.

AndroidBluetoothMultiplayer Events

// Fired when server is started and waiting for incoming connections
public static event Action ListeningStarted;

// Fired when listening for incoming connections
// was stopped by AndroidBluetoothMultiplayer.StopListening()
public static event Action ListeningStopped;

// Fired when Bluetooth was enabled
public static event Action AdapterEnabled;

// Fired when request to enabled Bluetooth failed for some reason
// (user did not authorized to enable Bluetooth or an error occured)
public static event Action AdapterEnableFailed;

// Fired when Bluetooth was disabled
public static event Action AdapterDisabled;

// Fired when Bluetooth discoverability was enabled
// Provides discoverability period duration.
public static event Action<int> DiscoverabilityEnabled;

// Fired when request to enabled Bluetooth discoverability failed for some reason
// (user dismissed the request dialog or an error occured)
public static event Action DiscoverabilityEnableFailed;

// Fired when Bluetooth client successfully connected to the Bluetooth server
// Provides BluetoothDevice of the server device
public static event Action<BluetoothDevice> ConnectedToServer;

// Fired when Bluetooth client failed to connect to the Bluetooth server.
// Provides BluetoothDevice of the server device
public static event Action<BluetoothDevice> ConnectionToServerFailed;

// Fired when Bluetooth client disconnected from the Bluetooth server.
// Provides BluetoothDevice of the server device.
public static event Action<BluetoothDevice> DisconnectedFromServer;

// Fired on Bluetooth server when an incoming Bluetooth
// client connection was accepted.
// Provides BluetoothDevice of the connected client device
public static event Action<BluetoothDevice> ClientConnected;

// Fired on Bluetooth server when a Bluetooth client had disconnected.
// Provides BluetoothDevice of the disconnected client device
public static event Action<BluetoothDevice> ClientDisconnected;

// Fired when user selects a device in the device picker dialog.
// Provides BluetoothDevice of the picked device
public static event Action<BluetoothDevice> DevicePicked;

// Fired when Bluetooth discovery is started
public static event Action DiscoveryStarted;

// Fired when Bluetooth discovery is finished
public static event Action DiscoveryFinished;

// Fired when a new device was found during Bluetooth discovery procedure.
// Provides BluetoothDevice of the found device
public static event Action<BluetoothDevice> DeviceDiscovered;

UNet Integration

Android Bluetooth Multiplayer includes a set of components that make it much easier
to integrate into UNet system. They are not mandatory to use and might not fit some
advanced cases, but are great to get you started quickly.

All components can be added from

Component → Network → Android Bluetooth Multiplayer

ANDROIDBLUETOOTHNETWORKMANAGERHELPER

A helper class that works in conjunction with the NetworkManager. It automatically
manages enabling Bluetooth, showing the device picker, and otherwise correctly
handling the Bluetooth session.

The whole NetworkManager.Start* family of methods is mirrored, just use this class
instead of using NetworkManager directly to start your client/server/host.

After adding this component to a GameObject, you can change some options in the
“Bluetooth Network Manager Settings” fold-out menu in the inspector. In particularly,
you might want to edit the “UUID” property, which serves as a unique application
identifier. If you have multiple scenes with different NetworkManager’s in your project,
make sure the UUID is identical everywhere, otherwise Bluetooth connections will fail.

Keep in mind that both AndroidBluetoothNetworkManagerHelper and
NetworkManager must be on the same GameObject. See the included
“BluetoothMultiplayerDemo” demo for an example of usage.

ANDROIDBLUETOOTHNETWORKMANAGER

Version of the NetworkManager that disconnects from the Bluetooth server when UNet
client is stopped. It is recommended to use instead of regular NetworkManager for
Bluetooth multiplayer.

ANDROIDBLUETOOTHLOBBYNETWORKMANAGER

Version of the NetworkLobbyManager that disconnects from the Bluetooth server when
UNet client is stopped. It is recommended to use instead of regular NetworkManager
for Bluetooth multiplayer.

ANROIDBLUETOOTHNETWORKMANAGERHUD

Version of NetworkManagerHUD that uses AndroidBluetoothNetworkManagerHelper
for networking routines.

https://docs.unity3d.com/ScriptReference/Networking.NetworkManager.html
https://docs.unity3d.com/ScriptReference/Networking.NetworkManager.html
https://docs.unity3d.com/ScriptReference/Networking.NetworkLobbyManager.html

Configuring AndroidManifest.xml and Extending

Activities

Plugin overrides built-in Unity activity and adds new permissions to
AndroidManifest.xml in order to function. This is done automatically, but you might
need to do it manually in some cases.

Added permissions are:

 <uses-permission android:name="android.permission.BLUETOOTH_ADMIN"/>
 <uses-permission android:name="android.permission.BLUETOOTH"/>

Since Android 6.0, device location permission is required for Bluetooth device discovery
to function. The plugin automatically adds coarse location access permission, if
necessary.

 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />

Activity classes for this plugin, overriding the built-in Unity activities, are:

com.lostpolygon.unity.bluetoothmediator.player.BluetoothUnityPlayerActivity
com.lostpolygon.unity.bluetoothmediator.player.BluetoothUnityPlayerNativeActivity

 You must override BluetoothUnityPlayerNativeActivity and
BluetoothUnityPlayerActivity to implement your custom functionality (for example,
adding some other plugin). Refer to

http://docs.unity3d.com/Documentation/Manual/PluginsForAndroid.html

for more details.

Activities source code can be found in “Assets/AndroidBluetoothMultiplayer/Plugins/
AndroidBluetoothMultiplayer_Integration/PlayerActivitiesSource.zip”. Android Studio
2.2 (or newer) is required for building the code.

http://docs.unity3d.com/Documentation/Manual/PluginsForAndroid.html

Integration with Prime31’s Android Activity

Sharing

Plugin includes a custom Activity for easy integration with Prime31’s plugins.
1. Setup Prime31’s plugins and make sure that everything works.
2. Import Android Bluetooth Multiplayer package.

3. Extract “AndroidBluetoothMultiplayerPrime31.jar” and
“Prime31UnityActivity.jar” files from “Assets/AndroidBluetoothMultiplayer
Plugins/AndroidBluetoothMultiplayer_Integration/
Prime31ActivitySharing.zip” archive and place them into
“Assets/Plugins/Android/” directory.

4. Open “Assets/Plugins/Android/AndroidManifest.xml” file.
5. In that file, find “com.unity3d.player.UnityPlayerNativeActivity” and

replace it with “com.prime31.UnityPlayerNativeActivity”.
6. In the same file, add the following line to the <application> section

<meta-data
android:name="com.lostpolygon.unity.bluetoothmediator.player.prime31.BluetoothUnityPlayerPrime31Proxy"
android:value="UnityPlayerActivityProxy"/>

7. You should be able to use both Prime31’s plugins and Android Bluetooth
Multiplayer now.

Refer to the Android Activity Sharing documentation:
https://gist.github.com/prime31/0908e6100d7e228f1add

https://gist.github.com/prime31/0908e6100d7e228f1add

Contact

For any questions or concerns about this plugin, feel free to contact me at:

Unity forums thread: http://bit.ly/1D4KWn0
e-mail: contact@lostpolygon.com
Skype: serhii.yolkin

Changelog

2.1.0:
 Official UNet support.
 New UNet-based multiplayer demo.
 Added an example of implementing custom device discovery UI.
 Improved Android 6.0 support.
 Rewritten manifest generator/patcher, much more reliable now.
 Removed Vuforia 3.5 support. With Vuforia 5 there is no need for a special

Activity anymore.
 Dropped support for Unity 5.1 and older. Unity 5.2 or newer is now a

requirement.
 Code cleanup and refactor.
 Minor fixes and improvements.

2.0.0:
 Major code refactoring and standardization.
 Added StartListening() method.
 Improved demos code.
 Added basic RPC file transfer demo.
 Fixed incorrect handling of disconnected clients that sometimes lead to crashes.
 Implemented comparison methods for BluetoothDevice.
 Improved compatibility with Unity 5.

1.3.3:
 Improved Android 5 compatibility.

http://bit.ly/1D4KWn0
mailto:contact@

1.3.2:
 Added onBluetoothDiscoverabilityEnabled and

onBluetoothDiscoverabilityEnableFailed events.

1.3.1:
 Fixed an issue when GetDiscoveredDevices() returned empty array before

starting the discovery process.

1.3:
 New IsDiscoverable() method.
 Added a parameter to ShowDeviceList() for showing only data-capable devices.
 Added detection of the Bluetooth device class.
 Improved integration with other Android plugins.
 Improved demo scenes.
 Code clean-up.

1.2.3:
 Fixed an issue when client wasn’t disconnecting from server.

1.2:
 New GetCurrentDevice() method to get current Bluetooth device information.
 BluetoothMultiplayerAndroidManager is now instantiated automatically,

no need to add prefab.
 New SetRawPackets() method to transmit data as raw (for advanced usage).

1.1:
 Add device discovery API (with demo usage example).
 Fix manifest generation on Mac OS X.
 Minor fixes.

1.0:
 Initial release.

